The legacy of human disturbance
Human activities partially or totally degrade ecosystems, making them less diverse, less functional and more vulnerable to further change. For years, we have been quantifying the effects of disturbance on ecosystem diversity and function, but less has been known about the effects of disturbance on their recovery. One may think that thanks to the restoration of degraded ecosystems and to increasing ecological engineering and design (e.g., nature based solutions, green infrastructure), we can bring back lost biodiversity and functions, and even justify further degradation.
The long-term recovery of ecosystem complexity
One of the most relevant questions in restoration ecology is to estimate the magnitude of anthropogenic disturbance, that is, what would it take for an ecosystem to fully recover? A common problem to respond to this question is to choose how to quantify disturbance or recovery. With present knowledge and technology it is still not possible to measure a whole ecosystem. However, several proxies that partially reflect the complexity of ecosystems have been used, and these include interaction networks. What is less clear is how the reassembly of interactions drives the functional recovery (and to some extent also viceversa). Studies are starting to show that the structure and stability of interaction networks strengthen as recovery proceeds. How and when a state of dynamic stability is reached, how it is affecting the resilience of the system to further disturbance and how it can be engineered or facilitated are some of our specific goals.
Increasing ecological complexity in restoration practice, and ecological engineering and design
We are developing tools where we apply the results of our empirical research to improve the practice of ecosystem restoration and ecological engineering and design. For example, if we understand what network structures are making the ecosystem less vulnerable to further change and more functional, we can replicate or engineer those structures. We are exploring this approach using the interactions between plant communities and soil microbial communities (fungi and bacteria). One approach we are developing is to engineer restoration pods as restoration units that are responsive to environmental change to release those network structures and start ecosystem development. Another approach is to introduce network modules in the restored or engineered landscape that include species with functional traits required to promote recovery.